29 research outputs found

    Using microscopy to manipulate and visualize signal transduction in living cells

    Get PDF
    Signaling events in cells are often localized and transient. Understanding how these pathways are regulated in space and time requires the development of new tools that reveal spatiotemporal transduction. Subcellular events can be visualized in real-time by high-resolution light microscopy. Technological advances in live-cell imaging have offered the means to not only observe the phenotypic consequences of signaling events, but to visualize and manipulate the activity of their components. This dissertation describes four studies in which microscopy is implemented to manipulate or visualize signal transduction in living cells. The first study demonstrates contributions to Chromophore Assisted Laser Inactivation, a light-mediated loss of function tool. The second study describes the generation of a new probe to visualize the activation of Src-family kinases. The third study utilizes a biosensor for the GTPase RhoA to reveal novel information about how this signaling component is spatiotemporally regulated in neurons. Finally, the fourth study describes a new computational method for the automated identification and tracking of protein structures called focal adhesions. Together these studies demonstrate the power of using microscopy to gain key insights to the spatiotemporal details of signal transduction

    Simultaneous quantification of actin monomer and filament dynamics with modelling assisted analysis of photoactivation

    Get PDF
    Photoactivation allows one to pulse-label molecules and obtain quantitative data about their behavior. We have devised a new modeling-based analysis for photoactivatable actin experiments that simultaneously measures properties of monomeric and filamentous actin in a three-dimensional cellular environment. We use this method to determine differences in the dynamic behavior of β- and γ-actin isoforms, showing that both inhabit filaments that depolymerize at equal rates but that β-actin exists in a higher monomer-to-filament ratio. We also demonstrate that cofilin (cofilin 1) equally accelerates depolymerization of filaments made from both isoforms, but is only required to maintain the β-actin monomer pool. Finally, we used modeling-based analysis to assess actin dynamics in axon-like projections of differentiating neuroblastoma cells, showing that the actin monomer concentration is significantly depleted as the axon develops. Importantly, these results would not have been obtained using traditional half-time analysis. Given that parameters of the publicly available modeling platform can be adjusted to suit the experimental system of the user, this method can easily be used to quantify actin dynamics in many different cell types and subcellular compartments

    Chromosome Fragmentation after Induction of a Double-Strand Break Is an Active Process Prevented by the RMX Repair Complex

    Get PDF
    Chromosome aberrations are common outcomes of exposure to DNA-damaging agents or altered replication events and are associated with various diseases and a variety of carcinomas, including leukemias, lymphomas, sarcomas, and epithelial tumors 1 and 2. The incidence of aberrations can be greatly increased as a result of defects in DNA repair pathways [3]. Although there is considerable information about the molecular events associated with the induction and repair of a double-strand break (DSB), little is known about the events that ultimately lead to translocations or deletions through the formation of chromosome breaks or the dissociation of broken ends. We describe a system for visualizing DNA ends at the site of a DSB in living cells. After induction of the break, DNA ends flanking the DSB site in wild-type cells remained adjacent. Loss of a functional RMX complex (Rad50/Mre11/Xrs2) or a mutation in the Rad50 Zn-hook structure resulted in DNA ends being dispersed in approximately 10%–20% of cells. Thus, the RMX complex holds broken ends together and counteracts mitotic spindle forces that can be destructive to damaged chromosomes

    Chromophore-assisted laser inactivation in cell biology

    Get PDF
    Chromophore-assisted laser inactivation (CALI) is a technique whereby engineered proteins and dye molecules that produce substantial amounts of reactive oxygen species upon absorption of light are used to perturb biological systems in a spatially and temporally defined manner. CALI is an important complement to conventional genetic and pharmacological manipulations. In this review, we examine the applications of CALI to cell biology and discuss the underlying photochemical mechanisms that mediate this powerful technique

    Modeling capping protein FRAP and CALI experiments reveals in vivo regulation of actin dynamics

    Get PDF
    To gain insights on cellular mechanisms regulating actin polymerization, we used the Virtual Cell to model FRAP and chromophore assisted laser inactivation (CALI) experiments on EGFP-capping protein (EGFP-CP). Modeling the FRAP kinetics demonstrated that the in vivo rate for the dissociation of CP from actin filaments is much faster (~0.1 s−1) than that measured in vitro (0.01–0.0004 s−1). The CALI simulation revealed that in order to induce sustainable changes in cell morphology after CP inactivation, the cells should exhibit anti-capping ability. We included the VASP protein as the anti-capping agent in the modeling scheme. The model predicts that VASP affinity for barbed ends has a cooperative dependence on the concentration of VASP-barbed end complexes. This dependence produces a positive feedback that stabilizes the complexes and allows sustained growth at clustered filament tips. We analyzed the range of laser intensities that are sufficient to induce changes in cell morphology. This analysis demonstrates that FRAP experiments with EGFP-CP can be performed safely without changes in cell morphology, because, the intensity of the photobleaching beam is not high enough to produce the critical concentration of free barbed ends that will induce filament growth before diffusional replacement of EGFP-CP occurs

    Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia

    Get PDF
    Chromophore-assisted laser inactivation (CALI) was developed to instantly and specifically inactivate cofilin in cells. Simultaneous CALI and live imaging revealed that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow in lamellipodia.Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin's spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow

    CellGeo: A computational platform for the analysis of shape changes in cells with complex geometries

    Get PDF
    The open source MATLAB application CellGeo is a user-friendly computational platform that allows simultaneous, automated tracking and analysis of dynamic changes in cell shape, including protrusions ranging from filopodia to lamellipodia to growth cones.Cell biologists increasingly rely on computer-aided image analysis, allowing them to collect precise, unbiased quantitative results. However, despite great progress in image processing and computer vision, current computational approaches fail to address many key aspects of cell behavior, including the cell protrusions that guide cell migration and drive morphogenesis. We developed the open source MATLAB application CellGeo, a user-friendly computational platform to allow simultaneous, automated tracking and analysis of dynamic changes in cell shape, including protrusions ranging from filopodia to lamellipodia. Our method maps an arbitrary cell shape onto a tree graph that, unlike traditional skeletonization algorithms, preserves complex boundary features. CellGeo allows rigorous but flexible definition and accurate automated detection and tracking of geometric features of interest. We demonstrate CellGeo’s utility by deriving new insights into (a) the roles of Diaphanous, Enabled, and Capping protein in regulating filopodia and lamellipodia dynamics in Drosophila melanogaster cells and (b) the dynamic properties of growth cones in catecholaminergic a–differentiated neuroblastoma cells

    A biosensor generated via high-throughput screening quantifies cell edge Src dynamics

    Get PDF
    Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge

    High-Resolution Quantification of Focal Adhesion Spatiotemporal Dynamics in Living Cells

    Get PDF
    Focal adhesions (FAs) are macromolecular complexes that provide a linkage between the cell and its external environment. In a motile cell, focal adhesions change size and position to govern cell migration, through the dynamic processes of assembly and disassembly. To better understand the dynamic regulation of focal adhesions, we have developed an analysis system for the automated detection, tracking, and data extraction of these structures in living cells. This analysis system was used to quantify the dynamics of fluorescently tagged Paxillin and FAK in NIH 3T3 fibroblasts followed via Total Internal Reflection Fluorescence Microscopy (TIRF). High content time series included the size, shape, intensity, and position of every adhesion present in a living cell. These properties were followed over time, revealing adhesion lifetime and turnover rates, and segregation of properties into distinct zones. As a proof-of-concept, we show how a single point mutation in Paxillin at the Jun-kinase phosphorylation site Serine 178 changes FA size, distribution, and rate of assembly. This study provides a detailed, quantitative picture of FA spatiotemporal dynamics as well as a set of tools and methodologies for advancing our understanding of how focal adhesions are dynamically regulated in living cells. A full, open-source software implementation of this pipeline is provided at http://gomezlab.bme.unc.edu/tools

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore